Octal 3-State Bus Transceivers
 AND D FLIP-FLOPS
 High-Performance Silicon-Gate CMOS

The IN74HC652 is identical in pinout to the LS/ALS652. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALSTTL outputs.

These devices consists of bus transceiver circuits, D-type flipflop, and control circuitry arranged for multiplex transmission of data directly from the data bus or from the internal storage registers. Direction and Output Enable are provided to select the read-time or stored data function. Data on the A or B Data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (A-to-B Clock or B-to-A Clock) regardless of the select or enable or enable control pins. When A-to-B Source and B-to-A Source are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simulta-neously enabling Direction and Output Enable. In this configuration each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.

The IN74HC652 has noninverted outputs.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices

ORDERING INFORMATION
IN74HC651N Plastic IN74HC651DW SOIC $\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages

PIN ASSIGNMENT
A-TO-B
CLOCK
A-TO-B
SOURCE

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5$	V
$\mathrm{~V}_{\text {Out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IN}	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Current, per Pin	± 35	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+		
		750	mW
$\mathrm{Tstg}^{\text {SOIC Package }}$	Storage Temperature	500	
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	-65 to +150	${ }^{\circ} \mathrm{C}$

Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
+Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{cc}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUt }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{cc}	V
T_{A}	Operating Temperature, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise (Figures2,3)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\text {CC }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{cc}). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	V_{cc}	Guaranteed Limit			Unit
				$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ -55^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \leq 85 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \leq 125 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{V}_{\text {IH }}$	Minimum HighLevel Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\text {cc }}-0.1 \mathrm{~V} \\ & \mid \text { Iout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low - Level Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{cc}}-0.1 \mathrm{~V} \\ & \mid \text { lout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \\ \hline \end{gathered}$	V
V_{OH}	Minimum HighLevel Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \text { lout }^{2} \mid \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
		$\begin{array}{\|l} \hline V_{1 N}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \left\|\left.\right\|_{\text {Iout }}\right\| \leq 6.0 \mathrm{~mA} \\ \left\|\left.\right\|_{\text {Iout }}\right\| \leq 7.8 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.98 \\ 5.48 \\ \hline \end{array}$	$\begin{array}{r} 3.84 \\ 5.34 \\ \hline \end{array}$	$\begin{aligned} & 3.7 \\ & 5.2 \\ & \hline \end{aligned}$	
VoL	Maximum LowLevel Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{HH}} \\ & \mid \text { lout } \mid \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \hline \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \text { Iout } \\ & \mid \text { lout } \leq 7.0 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.26 \\ 0.26 \\ \hline \end{array}$	$\begin{array}{r} 0.33 \\ 0.33 \\ \hline \end{array}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	
I_{N}	Maximum Input Leakage Current	$V_{I N}=V_{C C} \text { or GND }$ (Pins 1,2,3,21,22,and 23)	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
loz	Maximum ThreeState Leakage Current	Output in HighImpedance State $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $V_{\text {OUT }}=V_{\text {CC }}$ or $G N D$, I/O Pins	6.0	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{\prime}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	8.0	80	160	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	V_{cc}	Guaranteed Limit			Unit
			$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ -55^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	≤ 125	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	Maximum Propagation Delay, Input A to Output B (or Input B to Output A) (Figures 2,3 and 9)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 180 \\ 36 \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 225 \\ 45 \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} \hline 270 \\ 54 \\ 46 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \overline{t_{\text {PLH }}}, \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	Maximum Propagation Delay, A-to-B Clock to Output B (or B-to-A Clock to Output (Figures 1 and 9)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 240 \\ 48 \\ 41 \end{gathered}$	$\begin{aligned} & 300 \\ & 60 \\ & 51 \end{aligned}$	$\begin{gathered} 360 \\ 72 \\ 61 \end{gathered}$	ns
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Maximum Propagation Delay, A-to-B Source to Output B (or B-to-A Source to Output A) (Figures 4 and 9)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 220 \\ 44 \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 275 \\ 55 \\ 47 \\ \hline \end{gathered}$	$\begin{gathered} \hline 330 \\ 66 \\ 56 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLZ}}, \\ & \mathrm{t}_{\text {PHZ }} \end{aligned}$	Maximum Propagation Delay, Direction or Output Enable to Output A or B (Figures 5,6 and 10)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 170 \\ 34 \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 215 \\ 43 \\ 37 \end{gathered}$	$\begin{gathered} 255 \\ 51 \\ 43 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PLL, }} \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Maximum Propagation Delay, Direction or Output Enable to Output A or B (Figures 5,6 and 10)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 180 \\ 36 \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 225 \\ 45 \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 270 \\ 54 \\ 46 \\ \hline \end{gathered}$	ns
$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	Maximum Output Transition Time, Any Output (Figure 2)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance	-	10	10	10	pF
Cout	Maximum Three-State I/O Capacitance (Output in High-Impedance State	-	15	15	15	pF

$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Channel) Used to determine the no-load dynamic power $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C c} V_{c C}$ consumption:	Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	pF
		60	

TIMING REQUIREMENTS(Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \mathrm{~V} \end{aligned}$	Guaranteed Limit			Unit
			$\begin{gathered} 25^{\circ} \mathrm{C} \text { to- } \\ 55^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Input A to A-to-B Clock (or Input B to B-to-A Clock) (Figure 7)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 50 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & 65 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	ns
t_{h}	Minimum Hold Time, A-to-B Clock to Input A (or B-to-A Clock Input B) (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 25 \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \hline 30 \\ 6 \\ 5 \end{gathered}$	$\begin{gathered} 40 \\ 8 \\ 7 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, A-to-B Clock (or B-to-A Clock) (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figures 2 and 3)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

TIMING DIAGRAM

FUNCTION TABLE

Dir.	OE	CAB	CBA	SAB	SBA	A	B	FUNCTION
L	H					INPUTS	INPUTS	Both the A bus and the B bus are inputs.
		X	X	X	X	Z	Z	The output functions of the A and B bus are disabled.
		\sim^{-}	\sim^{-}	X	X	INPUTS	INPUTS	Both the A and B bus are used for inputs to the internal flip-flops. Data at the bus will be stored on low to high transition of the clock inputs.
L	L					OUTPUTS	INPUTS	The A bus are outputs and the B bus are inputs.
		X	X	X	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	The data at the B bus are displayed at the A bus.
		X	\sim^{-}	X	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	The data at the B bus are displayed at the A bus. The data of the B bus are stored to the internal flip-flops on low to high transition of the clock pulse.
		X	X	X	H	Qn	X	The data stored to the internal flipflops, are displayed at the A bus.
		X	\sim^{-}	X	H	$\underset{H}{H}$	$\underset{\mathrm{L}}{\mathrm{H}}$	The data at the B bus are stored to the internal flip-flops on low to high transition of the clock pulse. The states of the internal flip-flops output directly to the A bus.
H	H					INPUTS	OUTPUTS	The A bus are inputs and the B bus are outputs.
		X	X	L	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	The data at the A bus are displayed at the B bus.
		5^{-}	X	L	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	The data at the B bus are displayed at the A bus. The data of the B bus are stored to the internal flip-flops on low to high transition of the clock pulse.
		X	X	H	X	X	Qn	The data stored to the internal flipflops are displayed at the B bus.
		\sim^{-}	X	H	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	The data at the A bus are stored to the internal flip-flops on low to high transition of the clock pulse. The states of the internal flip-flops output directly to the B bus.
H	L					OUTPUTS	OUTPUTS	Both the A bus and the B bus are outputs
		X	X	H	H	Qn	Qn	The data stored to the internal flipflops are displayed at the A and B bus respectively.
		5	\sim^{5}	H	H	Qn	Qn	The output at the A bus are displayed at the B bus, the output at the B bus are displayed at the A bus respec.

X:DON'T CARE
Z : HIGH IMPEDANCE
Qn: THE DATA STORED TO THE INTERNAL FLIP-FLOPS BY MOST RECENT LOW TO HIGH TRANSITION OF THE CLOCK INPUTS
*: THE DATA AT THE A AND B BUS WILL BE STORED TO THE INTERNAL FLIP-FLOPS ON EVERY LOW TO TRANSITION OF THE CLOCK INPUTS

SWITCHING DIAGRAMS

Figure 1. Switching Waveforms

Figure 2. A Data Port = Input, B Data Port = Output

Figure 3. A Data Port = Output, B Data Port $=$ Input

Figure 4. Switching Waveforms

Figure 5. Switching Waveforms

Figure 6. Switching Waveforms

Figure 7. Switching Waveforms

EXPANDED LOGIC DIAGRAM

